Recessive Resistance to Plant Viruses: Potential Resistance Genes Beyond Translation Initiation Factors
نویسندگان
چکیده
The ability of plant viruses to propagate their genomes in host cells depends on many host factors. In the absence of an agrochemical that specifically targets plant viral infection cycles, one of the most effective methods for controlling viral diseases in plants is taking advantage of the host plant's resistance machinery. Recessive resistance is conferred by a recessive gene mutation that encodes a host factor critical for viral infection. It is a branch of the resistance machinery and, as an inherited characteristic, is very durable. Moreover, recessive resistance may be acquired by a deficiency in a negative regulator of plant defense responses, possibly due to the autoactivation of defense signaling. Eukaryotic translation initiation factor (eIF) 4E and eIF4G and their isoforms are the most widely exploited recessive resistance genes in several crop species, and they are effective against a subset of viral species. However, the establishment of efficient, recessive resistance-type antiviral control strategies against a wider range of plant viral diseases requires genetic resources other than eIF4Es. In this review, we focus on recent advances related to antiviral recessive resistance genes evaluated in model plants and several crop species. We also address the roles of next-generation sequencing and genome editing technologies in improving plant genetic resources for recessive resistance-based antiviral breeding in various crop species.
منابع مشابه
Plant Translation Factors and Virus Resistance
Plant viruses recruit cellular translation factors not only to translate their viral RNAs but also to regulate their replication and potentiate their local and systemic movement. Because of the virus dependence on cellular translation factors, it is perhaps not surprising that many natural plant recessive resistance genes have been mapped to mutations of translation initiation factors eIF4E and...
متن کاملDeficiency of the eIF4E isoform nCBP limits the cell-to-cell movement of a plant virus encoding triple-gene-block proteins in Arabidopsis thaliana
One of the important antiviral genetic strategies used in crop breeding is recessive resistance. Two eukaryotic translation initiation factor 4E family genes, eIF4E and eIFiso4E, are the most common recessive resistance genes whose absence inhibits infection by plant viruses in Potyviridae, Carmovirus, and Cucumovirus. Here, we show that another eIF4E family gene, nCBP, acts as a novel recessiv...
متن کاملAn eIF4E allele confers resistance to an uncapped and non-polyadenylated RNA virus in melon.
The characterization of natural recessive resistance genes and virus-resistant mutants of Arabidopsis have implicated translation initiation factors of the 4E family [eIF4E and eIF(iso)4E] as susceptibility factors required for virus multiplication and resistance expression. To date, viruses controlled by these genes mainly belong to the family Potyviridae. Melon necrotic spot virus (MNSV) belo...
متن کاملAn Induced Mutation in Tomato eIF4E Leads to Immunity to Two Potyviruses
BACKGROUND The characterization of natural recessive resistance genes and Arabidopsis virus-resistant mutants have implicated translation initiation factors of the eIF4E and eIF4G families as susceptibility factors required for virus infection and resistance function. METHODOLOGY/PRINCIPAL FINDINGS To investigate further the role of translation initiation factors in virus resistance we set up...
متن کاملGenetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage).
The Brassica rapa line RLR22 was resistant to eight diverse turnip mosaic virus (TuMV) isolates. A B. rapa genetic map based on 213 marker loci segregating in 120 first back-cross (B(1)) individuals was established and aligned with the B. rapa genome reference map using some of the RFLP probes. B(1) individuals were self-pollinated to produce B(1)S(1) families. The existence of two loci control...
متن کامل